3.625 \(\int \sqrt [3]{d \sec (e+f x)} (a+b \tan (e+f x)) \, dx\)

Optimal. Leaf size=76 \[ \frac{3 b \sqrt [3]{d \sec (e+f x)}}{f}-\frac{3 a d \sin (e+f x) \text{Hypergeometric2F1}\left (\frac{1}{3},\frac{1}{2},\frac{4}{3},\cos ^2(e+f x)\right )}{2 f \sqrt{\sin ^2(e+f x)} (d \sec (e+f x))^{2/3}} \]

[Out]

(3*b*(d*Sec[e + f*x])^(1/3))/f - (3*a*d*Hypergeometric2F1[1/3, 1/2, 4/3, Cos[e + f*x]^2]*Sin[e + f*x])/(2*f*(d
*Sec[e + f*x])^(2/3)*Sqrt[Sin[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0598606, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3486, 3772, 2643} \[ \frac{3 b \sqrt [3]{d \sec (e+f x)}}{f}-\frac{3 a d \sin (e+f x) \text{Hypergeometric2F1}\left (\frac{1}{3},\frac{1}{2},\frac{4}{3},\cos ^2(e+f x)\right )}{2 f \sqrt{\sin ^2(e+f x)} (d \sec (e+f x))^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[(d*Sec[e + f*x])^(1/3)*(a + b*Tan[e + f*x]),x]

[Out]

(3*b*(d*Sec[e + f*x])^(1/3))/f - (3*a*d*Hypergeometric2F1[1/3, 1/2, 4/3, Cos[e + f*x]^2]*Sin[e + f*x])/(2*f*(d
*Sec[e + f*x])^(2/3)*Sqrt[Sin[e + f*x]^2])

Rule 3486

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(d*Sec[
e + f*x])^m)/(f*m), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \sqrt [3]{d \sec (e+f x)} (a+b \tan (e+f x)) \, dx &=\frac{3 b \sqrt [3]{d \sec (e+f x)}}{f}+a \int \sqrt [3]{d \sec (e+f x)} \, dx\\ &=\frac{3 b \sqrt [3]{d \sec (e+f x)}}{f}+\left (a \sqrt [3]{\frac{\cos (e+f x)}{d}} \sqrt [3]{d \sec (e+f x)}\right ) \int \frac{1}{\sqrt [3]{\frac{\cos (e+f x)}{d}}} \, dx\\ &=\frac{3 b \sqrt [3]{d \sec (e+f x)}}{f}-\frac{3 a \cos (e+f x) \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};\cos ^2(e+f x)\right ) \sqrt [3]{d \sec (e+f x)} \sin (e+f x)}{2 f \sqrt{\sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.174404, size = 58, normalized size = 0.76 \[ \frac{\sqrt [3]{d \sec (e+f x)} \left (a \cos ^2(e+f x)^{2/3} \tan (e+f x) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{2}{3},\frac{3}{2},\sin ^2(e+f x)\right )+3 b\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Sec[e + f*x])^(1/3)*(a + b*Tan[e + f*x]),x]

[Out]

((d*Sec[e + f*x])^(1/3)*(3*b + a*(Cos[e + f*x]^2)^(2/3)*Hypergeometric2F1[1/2, 2/3, 3/2, Sin[e + f*x]^2]*Tan[e
 + f*x]))/f

________________________________________________________________________________________

Maple [F]  time = 0.124, size = 0, normalized size = 0. \begin{align*} \int \sqrt [3]{d\sec \left ( fx+e \right ) } \left ( a+b\tan \left ( fx+e \right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*sec(f*x+e))^(1/3)*(a+b*tan(f*x+e)),x)

[Out]

int((d*sec(f*x+e))^(1/3)*(a+b*tan(f*x+e)),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \sec \left (f x + e\right )\right )^{\frac{1}{3}}{\left (b \tan \left (f x + e\right ) + a\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(1/3)*(a+b*tan(f*x+e)),x, algorithm="maxima")

[Out]

integrate((d*sec(f*x + e))^(1/3)*(b*tan(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (d \sec \left (f x + e\right )\right )^{\frac{1}{3}}{\left (b \tan \left (f x + e\right ) + a\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(1/3)*(a+b*tan(f*x+e)),x, algorithm="fricas")

[Out]

integral((d*sec(f*x + e))^(1/3)*(b*tan(f*x + e) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt [3]{d \sec{\left (e + f x \right )}} \left (a + b \tan{\left (e + f x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))**(1/3)*(a+b*tan(f*x+e)),x)

[Out]

Integral((d*sec(e + f*x))**(1/3)*(a + b*tan(e + f*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \sec \left (f x + e\right )\right )^{\frac{1}{3}}{\left (b \tan \left (f x + e\right ) + a\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(1/3)*(a+b*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((d*sec(f*x + e))^(1/3)*(b*tan(f*x + e) + a), x)